Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38242697

RESUMO

Cardiovascular homeostasis is maintained, in part, by neural signals arising from arterial baroreceptors that apprise the brain of blood volume and pressure. Here, we test whether neurons within the nodose ganglia that express angiotensin type-1a receptors (referred to as NGAT1aR) serve as baroreceptors that differentially influence blood pressure (BP) in male and female mice. Using Agtr1a-Cre mice and Cre-dependent AAVs to direct tdTomato to NGAT1aR, neuroanatomical studies revealed that NGAT1aR receive input from the aortic arch, project to the caudal nucleus of the solitary tract (NTS), and synthesize mechanosensitive ion channels, Piezo1/2 To evaluate the functionality of NGAT1aR, we directed the fluorescent calcium indicator (GCaMP6s) or the light-sensitive channelrhodopsin-2 (ChR2) to Agtr1a-containing neurons. Two-photon intravital imaging in Agtr1a-GCaMP6s mice revealed that NGAT1aR couple their firing to elevated BP, induced by phenylephrine (i.v.). Furthermore, optical excitation of NGAT1aR at their soma or axon terminals within the caudal NTS of Agtr1a-ChR2 mice elicited robust frequency-dependent decreases in BP and heart rate, indicating that NGAT1aR are sufficient to elicit appropriate compensatory responses to vascular mechanosensation. Optical excitation also elicited hypotensive and bradycardic responses in ChR2-expressing mice that were subjected to deoxycorticosterone acetate (DOCA)-salt hypertension; however, the duration of these effects was altered, suggestive of hypertension-induced impairment of the baroreflex. Similarly, increased GCaMP6s fluorescence observed after administration of phenylephrine was delayed in mice subjected to DOCA-salt or chronic delivery of angiotensin II. Collectively, these results reveal the structure and function of NGAT1aR and suggest that such neurons may be exploited to discern and relieve hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , 60598 , Camundongos , Masculino , Feminino , Animais , Acetato de Desoxicorticosterona/farmacologia , Núcleo Solitário/fisiologia , Células Receptoras Sensoriais , Pressão Sanguínea/fisiologia , Fenilefrina/farmacologia , Canais Iônicos
2.
Exp Gerontol ; 111: 133-140, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006298

RESUMO

The obesity epidemic is multi-generational and is particularly debilitating in the aging population, necessitating the use of pharmaceutical interventions. Recent evidence suggests that increasing the activity of the angiotensin converting enzyme-2 [ACE2]/angiotensin-(1-7)[Ang-(1-7)]/Mas receptor (MasR) axis in obese animal models leads to significant reductions in body weight. It was hypothesized that activation of ACE2 via diminazene aceturate (DIZE) will significantly reduce body weight of rats fed a high fat diet. Young and old (4 and 23 months, respectively) male Fisher 344 × Brown Norway rats were fed 60% high fat diet for one week, and subsequently given either 15 mg/kg/day DIZE s.c. or vehicle for three weeks. DIZE treatment resulted in a significant reduction of food intake and body weight in both young and old animals. However, that decrease was so dramatic in the older animals that they all nearly stopped eating. Interestingly, the TD-NMR assessments revealed that the weight-loss was primarily a result of decreased body fat percentage, with a relative preservation of lean mass. Tissue weights confirm the significant loss of white adipose tissue (WAT), with no change in muscle weights. Gene expression and serum ACE2 activity analyses implied that increased activation of the ACE2/Ang-(1-7)/MasR axis plays a role in reducing fat mass. Collectively, our results suggest that DIZE may be a useful tool in the study of obesity; however, caution is recommended when using this compound in older animals due to severe anorectic effects, although there is a mechanism by which muscle is preserved.


Assuntos
Adiposidade/efeitos dos fármacos , Angiotensina I/metabolismo , Diminazena/análogos & derivados , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Fatores Etários , Angiotensina I/genética , Enzima de Conversão de Angiotensina 2 , Animais , Diminazena/farmacologia , Modelos Animais de Doenças , Expressão Gênica , Masculino , Fragmentos de Peptídeos/genética , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/genética , Ratos , Ratos Endogâmicos F344 , Sistema Renina-Angiotensina/efeitos dos fármacos
3.
Neuropharmacology ; 133: 85-93, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360543

RESUMO

This study used mice to evaluate whether coupling expression of corticotropin-releasing hormone (CRH) and angiotensin converting enzyme 2 (ACE2) creates central interactions that blunt endocrine and behavioral responses to psychogenic stress. Central administration of diminazene aceturate, an ACE2 activator, had no effect on restraint-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis; however, mice that ubiquitously overexpress ACE2 had reduced plasma corticosterone (CORT) and pituitary expression of POMC mRNA. The Cre-LoxP system was used to restrict ACE2 overexpression to CRH synthesizing cells and probe whether HPA axis suppression was the result of central ACE2 and CRH interactions. Within the paraventricular nucleus of the hypothalamus (PVN), mice with ACE2 overexpression directed to CRH had a ≈2.5 fold increase in ACE2 mRNA, which co-localized with CRH mRNA. Relative to controls, mice overexpressing ACE2 in CRH cells had a decreased CORT response to restraint as well as decreased CRH mRNA in the PVN and CEA and POMC mRNA in the pituitary. Administration of ACTH similarly increased plasma CORT, indicating that the blunted HPA axis activation that accompanies ACE2 overexpression in CRH cells is centrally mediated. Anxiety-like behavior was assessed to determine whether the decreased HPA axis activation was predictive of anxiolysis. Mice with ACE2 overexpression directed to CRH cells displayed decreased anxiety-like behavior in the elevated plus maze and open field when compared to that of controls. Collectively, these results suggest that exogenous ACE2 suppresses CRH synthesis, which alters the central processing of psychogenic stress, thereby blunting HPA axis activation and attenuating anxiety-like behavior.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/uso terapêutico , Peptidil Dipeptidase A/metabolismo , Estresse Psicológico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Hormônio Liberador da Corticotropina/sangue , Hormônio Liberador da Corticotropina/genética , Diminazena/análogos & derivados , Diminazena/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativadores de Enzimas/uso terapêutico , Hormônios/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidil Dipeptidase A/genética , Hipófise/metabolismo , Sistema Hipófise-Suprarrenal/diagnóstico por imagem , Sistema Hipófise-Suprarrenal/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética
4.
Appl Physiol Nutr Metab ; 42(1): 59-67, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28006433

RESUMO

Hypothalamic inflammation and increased oxidative stress are believed to be mechanisms that contribute to obesity. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol), a free radical scavenger, has been shown to reduce inflammation and oxidative stress. We hypothesized that brain infusion of tempol would reduce oxidative stress, and thus would reduce food intake and body weight and improve body composition in rats with age-related obesity and known elevated oxidative stress. Furthermore, we predicted an associated increase in markers of leptin signalling, including the silent mating type information regulator 2 homolog 1 (SIRT1)/5'AMP-activated protein kinase (AMPK) pathway and the signal transducer and activator of transcription 3 (STAT3) pathway. For this purpose, osmotic minipumps were placed in the intracerebroventricular region of young (3 months) and aged (23 months) male Fischer 344 x Brown Norway rats for the continuous infusion of tempol or vehicle for 2 weeks. Tempol significantly decreased (p < 0.01) nicotinamide adenine dinucleotide phosphate oxidase activity in the hypothalamus but failed to reduce food intake or weight gain and did not alter body composition. SIRT1 activity and Acetyl p53 were decreased and phosphorylation of AMPK was increased with age, but they were unchanged with tempol. Basal phosphorylation of STAT3 was unchanged with age or tempol. These results indicate that tempol decreases oxidative stress but fails to alter feeding behaviour, body weight, or body composition. Moreover, tempol does not modulate the SIRT1/AMPK/p53 pathway and does not change leptin signalling. Thus, a reduction in hypothalamic oxidative stress is not sufficient to reverse age-related obesity.


Assuntos
Envelhecimento , Disfunção Cognitiva/prevenção & controle , Óxidos N-Cíclicos/administração & dosagem , Sequestradores de Radicais Livres/administração & dosagem , Hipotálamo/efeitos dos fármacos , Nootrópicos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Disfunção Cognitiva/etiologia , Cruzamentos Genéticos , Óxidos N-Cíclicos/efeitos adversos , Óxidos N-Cíclicos/uso terapêutico , Ingestão de Energia/efeitos dos fármacos , Sequestradores de Radicais Livres/efeitos adversos , Sequestradores de Radicais Livres/uso terapêutico , Hipotálamo/metabolismo , Bombas de Infusão Implantáveis , Infusões Intraventriculares , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nootrópicos/efeitos adversos , Nootrópicos/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Marcadores de Spin
5.
Physiol Behav ; 178: 157-165, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27887998

RESUMO

Over recent years, the renin-angiotensin-system (RAS), which is best-known as an endocrine system with established roles in hydromineral balance and blood pressure control, has emerged as a fundamental regulator of many additional physiological and pathophysiological processes. In this manuscript, we celebrate and honor Randall Sakai's commitment to his trainees, as well as his contribution to science. Scientifically, Randall made many notable contributions to the recognition of the RAS's roles in brain and behavior. His interests, in this regard, ranged from its traditionally-accepted roles in hydromineral balance, to its less-appreciated functions in stress responses and energy metabolism. Here we review the current understanding of the role of the RAS in the regulation of metabolism. In particular, the opposing actions of the RAS within adipose tissue vs. its actions within the brain are discussed.


Assuntos
Metabolismo Energético/fisiologia , Sistema Renina-Angiotensina/fisiologia , Tecido Adiposo/metabolismo , Animais , Encéfalo/metabolismo , Humanos
6.
Clin Exp Pharmacol Physiol ; 43(9): 802-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27232670

RESUMO

The authors have previously demonstrated that a low and intermittent peripheral dose of rapamycin (1 mg/kg three times/week) to rats inhibited mTORC1 signalling, but avoided the hyperlipidemia and diabetes-like syndrome associated with higher doses of rapamycin. The dosing regimen reduced food intake, body weight, adiposity, serum leptin and triglycerides. mTORC1 signalling was inhibited in both liver and hypothalamus, suggesting some of the actions, in particular the decrease in food intake, may be the results of a central mechanism. To test this hypothesis, rapamycin (30 µg/day for 4 weeks) was infused into 23-25-month-old F344xBN rats by intracerebroventricular (icv) mini pumps. Our results demonstrated that central infusion did not alter food intake or body weight, although there was a tendency for a decrease in body weight towards the end of the study. mTORC1 signalling, evidenced by decreased phosphorylation of S6 protein at end of 4 weeks, was not activated in liver, hypothalamus or hindbrain. Fat and lean mass, sum of white adipose tissues, brown adipose tissue, serum glucose, insulin and leptin levels remained unchanged. Thus, these data suggest that the anorexic and body weight responses evident with peripheral rapamycin are not the result of direct central action. The tendency for decreased body weight towards the end of study, suggests that there is either a slow transport of centrally administered rapamycin into the periphery, or that there is delayed action of rapamycin at sites in the brain.


Assuntos
Anorexia/tratamento farmacológico , Anorexia/fisiopatologia , Sirolimo/farmacologia , Animais , Anorexia/metabolismo , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Ratos , Sirolimo/uso terapêutico , Resultado do Tratamento
7.
Adv Exp Med Biol ; 681: 49-60, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21222259

RESUMO

As the percentage of obese humans expands, new options for weight loss are being explored. Body weight homeostasis is the result of a balance between energy intake (food) and expenditure (activity). A shift in homeostasis into a negative balance results in weight loss. Two potential options available for the management of body weight, as related to the melanocortin system, are exercise (increase energy expenditure) and drugs targeting the melanocortin-4 receptors for satiety.


Assuntos
Exercício Físico/fisiologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Humanos , Melanocortinas/metabolismo , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...